Интернет-магазин ООО «3ДТУЛ» 3Dtool $$

Россия, г. Москва, ул. Дорогобужская, д. 14, стр. 4, офис 302

8 (800) 775-86-69

0
Сравнение
Сравните товары по характеристикам! Начните свой выбор с каталога товаров или воспользуйтесь поиском, если ищете что-то конкретное.
Вы смотрели
Список просмотренных товаров пока пуст. Вы можете начать свой выбор с каталога товаров или воспользоваться поиском, если ищете что-то конкретное.
0
В корзине
нет товаров
Главная страницаСтатьи3D принтеры: описание, назначение и принцип работы

3D принтеры: описание, назначение и принцип работы

Как работает 3D принтер
Как работает 3D принтер
Рейтинг ()

Содержание:

  1. Что такое 3D-принтер
  2. Как работают трехмерные принтеры
  3. Особенности печати изделий на принтере
  4. Зачем нужен 3D-чертеж и как он работает
  5. Методы 3D-печати
  6. Что можно печатать на 3D-принтерах
  7. Заключение

3D-принтеры являются современной альтернативой традиционным методам промышленного производства. По своей конструкции они напоминают обычные офисные принтеры, только печатающие в трех плоскостях (ширина, высота, глубина). Устройства позволяют изготавливать миниатюрные или крупные объемные объекты с различными физическими характеристиками. При этом, аддитивное производство требует меньших расходов, обеспечивает более высокую эффективность в сравнении с традиционными технологиями.

Поговорим о том, что представляют собой 3D-принтеры, как они работают, какие технологии используют. Также рассмотрим виды продукции, которую можно изготовить с помощью данного оборудования.

Что такое 3D-принтер

Это специальная техника для печати объемных физических объектов на основе цифровых компьютерных моделей.

Основные части конструкции 3D-принтера:

  • открытый или закрытый корпус (камера сборки);
  • рама – объединяет все детали и механизмы оборудования;
  • шаговый, линейный двигатели – приводят в движение механизм, отвечают за скорость и точность печатного процесса;
  • рабочая платформа (стол, печатная платформа) – поверхность, на которой формируются трехмерные детали;
  • печатающая головка (экструдер) – система захвата отмеряет нужное количество материала, подает его через разогретое сопло, полужидкий пластик выдавливается в виде нитей;
  • фиксаторы – датчики для определения координат печати, ограничения подвижных элементов (обеспечивают работу в пределах рабочей платформы, следят за аккуратностью печати).

Как работают 3D-принтеры

Процессом печати управляют при помощи компьютерной программы, в которую предварительно загружают объемную цифровую модель будущего предмета, моделируют ее, задают форму, размеры, технические параметры. Задачей принтера является преобразование цифрового эскиза в осязаемый материальный объект.

Есть много вариантов 3D-принтеров, которые различаются по конструкции и используемой технологии печати. Но все они имеют общий принцип работы: послойное построение 3Д-модели на основе заданного образца печати каждого слоя. Печать происходит в автоматическом режиме, обеспечивая максимально точное воспроизведение 3D-модели.

Способ построения объектов с помощью 3Д-принтера зависит от особенностей применения расходного материала: металла или пластика.

Печать по металлу

В процессе построения печатная головка распыляет клей (связующее вещество) на определенные места в соответствии с заданной программой. Затем на платформу наносится металлический порошок, который затвердевает при контакте с клеем. Процедура повторяется до завершения нанесения последнего слоя.

Как правило, объемные 3D-принтеры для работы с металлами представляют собой дорогое, массивное промышленное оборудование. Устройства используются в первую очередь для создания объектов со сложной геометрией, литье и механическая обработка которых являются в крайней степени трудоемкими, а также значительно удорожают производство.

Принтеры по металлу востребованы в производстве:

  • зубных коронок, стоматологических мостов;
  • индивидуальных медицинских имплантатов;
  • ювелирных изделий;
  • прототипов серийных деталей, применяемых для испытаний, тестирований в авиационной или автомобильной промышленности.

В сравнении с классическими производственными методами, объемные принтеры позволяют изготавливать предметы из металла с массой на 60% меньше. Трехмерная печать значительно сокращает показатель отходов и помогает экономить большие объемы средств. Особенно это актуально для авиационной промышленности, где процент отходов при традиционном производстве может достигать 90%. Еще один плюс аддитивной техники – намного более экономное энергопотребление.

Печать по пластику

Создание изделий из пластика (ABS, PLA и др.) с помощью аддитивных технологий базируется на расплавлении расходника до жидкой консистенции. Пластиковый филамент подается в виде литой нити (трубки), разогревается, плавится при прохождении через сопло экструдера, затем выдавливается в нужные места на рабочем столе.

Техника для печати по термопластику используется преимущественно на дому или на предприятиях малого бизнеса. На ней изготавливают сувениры, различные макеты, элементы интерьера, прототипы обуви или одежды и др. Метод ценят за высокое качество печати изделий и большие возможности их кастомизации. Другие преимущества печати пластиком - малое количество отходов, экологичность процесса, разнообразие расходных материалов и кратчайшие сроки прототипирования.

Особенности печати изделий на принтере

Процесс построения трехмерных физических объектов с помощью 3D-печатного оборудования состоит из нескольких этапов:

  1. Разработка электронной модели. Можно использовать готовую модель, взятую из общедоступных источников (CG Trader, Thingiverse и т.п.) или загрузить модель, созданную с помощью 3D-сканера. Также можно разработать эскиз в специальном программном обеспечении (Blender, AutoCAD, AutoDesk, Fusion360 и др.). Готовую цифровую модель сохраняют в одном из общепринятых форматов (.3DS, .FBX, .OBJ, .STL и др.) и экспортируют на компьютер.
  2. Подготовка файла к печати. Для этого используют специальные программы-слайсеры (к примеру, Cura, AstroPrint, Simplify3D и др.). Предварительно настроенная программа «нарезает» модель на тонкие слои и задает координаты передвижения для экструдера на каждом слое. Готовый файл с данными объекта экспортируется на компьютер в формате .gcode и загружается в принтер.
  3. Подготовка печатного устройства. Проверяется исправность отдельных компонентов конструкции, калибруются узлы, прогревается сопло, подготавливается расходный материал (устанавливается филамент или заливается фотополимерная смола) и т.д.
  4. Печать. На панели управления выбирается нужный файл и отправляется на печать.
  5. Постобработка. На готовой модели могут остаться неровности или остатки поддерживающих элементов, которые нужно удалить с помощью наждачной бумаги, надфиля, канцелярского ножа или других инструментов. Если для печати используются отверждаемые фотополимеры, то постобработка моделей заключается в их промывке в спирте и дополнительной засветке в УФ-камере до полного отверждения.

Зачем нужен 3D-чертеж и как он работает

Трехмерные объекты распечатываются по 3D-чертежу, который создается в специальной программе, затем сохраняется в формате STL или другом общепринятом формате. Файл с чертежом загружают в слайсер и обрабатывают (нарезают на слои определенной толщины, задают плотность и другие физические свойства). В результате создается инструкция для печатающей головки, которую отправляют на принтер. 3D-чертежи можно делать самостоятельно в программе-конструкторе.

Методы 3D-печати

На данный момент существует более 10 актуальных технологий объемной печати. Рассмотрим самые популярные из них.

Стереолитография

Стереолитография (SLA – «stereolithography apparatus», «стереолитографический аппарат», или SL – «stereolithography») основана на послойном отверждении жидких расходных материалов под воздействием лучей лазера. В качестве расходников применяются различные фотополимеры, т.е. вещества, меняющие свои свойства и приобретающие твердость под воздействием ультрафиолетовых лучей. Свойства веществ зависят от продолжительности воздействия и длины УФ-волны.

Особенности технологии:

  1. Внутрь ванночки с жидкой фотополимерной смолой помещают сетчатую платформу для построения объекта.
  2. Рабочая платформа располагает на глубине, равной одному слою фотополимера.
  3. Лазерный луч воздействует на определенные участки смолы, обеспечивая их затвердевание.
  4. Платформа опускается на толщину одного слоя, процесс повторяется.

Напечатанный предмет подвергают постобработке: опускают в ванну со специальным составом для удаления лишних элементов, затем извлекают и облучают светом для полного отверждения.

Стереолитография востребована в научных изысканиях (например, для визуализации газо- и гидродинамических потоков внутри прозрачных моделей). Ее применяют в стоматологии (изготовление моделей костей, зубов пациентов), ювелирном деле и т.д.

FDM

Технология FDM (Fused Deposition Modeling) основана на моделировании деталей методом наплавления. Другое ее название – FFF (Fused Filament Fabrication – «производство методом наплавления нитей»).

Объекты создаются послойно из предварительно расплавленной нити пластика. Экструдер подает материал и укладывает его в положение, заданное программой. Готовые изделия, как правило, нуждаются в дополнительной обработке для выравнивания поверхности.

При помощи FDM-принтеров можно производить различные изделия. Это могут быть товары народного потребления (детали для бытовой техники, игрушки, мебель и т.п.). Компоненты для высокоточного оборудования, прототипы изделий для малого, среднего серийного производства, а также многое другое. Метод FDM оптимально подходит для изготовления крупногабаритных предметов с экономической и практической точки зрения.

SLS

SLS (Selective Laser Sintering) – это технология селективного (выборочного) лазерного спекания. Метод печати базируется на использовании углекислотного лазера и таких расходных материалов, как порошки из металлов, стекла, полимеров или керамики. В том числе, могут использоваться порошки в виде гранул, состоящих из металлического ядра и оболочки из легкоплавкого материала. Лазерный луч выборочно разогревает порошок почти до температуры плавления, и отдельные гранулы спекаются воедино, образуя прочную, твердую структуру. Чем выше температура спекания, тем выше должна быть мощность лазера. Наличие нескольких лазеров увеличивает скорость работы SLS-принтера.

Стоит отметить, что при печати методом SLS происходит только частичное плавление поверхности гранул порошка.

Данная технология оптимально подходит для изготовления предметов со сложной геометрией, например, высокоточных промышленных деталей для функционального тестирования или компонентов механизмов и двигателей.

DLP

DLP (Digital Light Processing) – это цифровая обработка светом. Световой поток воздействует на фотополимерную смолу, в результате материал затвердевает. Для печати используется светодиодная матрица с пикселями в виде микроскопических зеркал. Главное отличие технологии – засвечивается сразу вся поверхность, то есть каждый слой создается одномоментно, что значительно ускоряет печать без ущерба ее качеству.

DLP – одна из наиболее точных, скоростных печатных технологий. Области ее применения – медицина (стоматология), ювелирное дело, искусство, научные исследования и др. Готовые модели нужно беречь от света, иначе они могут покрыться трещинами и стать хрупкими.

Polyjet

Метод состоит в послойном отверждении (полимеризации) распыленного жидкого полимера под воздействием ультрафиолетовых лучей. Готовые модели не требуют дополнительной обработки. Можно работать с неоднородными материалами, включая композиты. Также доступно создание разноцветных объектов (использование сложной цветопередачи с палитрой более 1000 оттенков).

Polyjet-принтеры обычно имеют несколько печатных головок, что дает возможность создавать сразу несколько предметов одновременно или ускорить печать одного объекта.

Готовые детали имеют стабильные геометрические формы и идеально гладкую поверхность. Они легко поддаются обработке (окрашиванию, склейке, шлифовке, распиливанию, сверлению и т.п.) и полностью готовы к эксплуатации.

Метод Polyjet оптимален для изготовления тестовых моделей, прототипов, образцов для литья в силикон и других продуктов.

Для всех существующих 3D-печатных технологий характерны следующие общие тенденции:

  • постепенно методы 3D-печати будут становиться все более дешевыми и доступными для всех категорий пользователей;
  • в будущем домашние 3Д-принтеры будут распространены наравне с промышленными (индустриальными) печатными аппаратами.

Что можно печатать на 3D-принтерах

Методы аддитивного производства задействованы во многих производственных, промышленных областях. На 3D-принтерах можно печатать почти все что угодно, главное, иметь достаточно производительное оборудование, цифровую модель и подходящий расходный материал.

Рассмотрим несколько перспективных отраслей, в которых применяется 3Д-печать.

Создание моделей по собственным эскизам

Используя специализированные сервисы, например, Jweel или Thinker Thing, можно легко разрабатывать персонализированные модели разных предметов (ювелирных украшений, роботов, обуви и т.д.) для их дальнейшей печати на 3D-принтере.

Изготовление прототипов

Быстрое прототипирование – популярное направление объемной печати. На 3Д-принтерах печатают прототипы олимпийского снаряжения, барельефов, лечебных корсетов, тестовые модели протезов и многое другое. Эта область 3D-печати позволяет эффективно тестировать и дорабатывать образцы продуктов перед их запуском в серийное производство.

Медицина

Устройства для трехмерной печати применяют для протезирования, создания искусственных органов, тканей и суставов, производства стоматологических продуктов, хирургических инструментов. В качестве расходников используют «живые» растворы и другие биосовместимые материалы.

Запчасти и детали

Иногда невозможно или очень сложно найти деталь для какого-либо механизма из-за того, что производитель снял ее с производства. В таком случае можно сделать эскиз нужной запчасти в редакторе или найти ее цифровую модель в интернете, а затем просто напечатать на принтере.

Моделирование и хобби

3Д-печать существенно облегчает производство коллекционных моделей, фигурок и разных миниатюр.

Строительство домов

Строительные принтеры возводят стены зданий и другие элементы сооружений. Оборудование состоит из рельсовых направляющих (с контроллерами и моторами) и подвижного сопла, через которое на рабочую площадку подается строительная смесь (бетон или полимерный состав).

Промышленный дизайн и архитектура

При помощи аддитивных технологий изготавливают макеты поселков, микрорайонов, домов и городской инфраструктуры (дорог, магазинов, транспорта, освещения и т.д.).

Образование

3D-печать применяется для создания макетов и наглядных пособий для детсадов, школ, вузов. На специальных принтерах печатают, например, увеличенные модели молекул, пробирки, токопроводящие стенды, ручки и т.д.

Космос и авиация

3D-принтеры помогают создавать высокотехнологичные аппараты и комплектующие для космических станций, ракет, самолетов.

Заключение

Трехмерная печать – экологически чистая, экономичная и эффективная альтернатива традиционным технологиям производства промышленных продуктов, сфера применения которой постоянно расширяется. Используя 3D-принтеры, можно быстро печатать высокоточные изделия и экономить трудовые ресурсы. 3D-печатное оборудование и расходные материалы к нему постепенно дешевеют, становясь доступными для большинства пользователей, поэтому коммерческие перспективы этой отрасли не вызывают сомнений.

Компания 3DTool предлагает разные виды и модели 3Д-принтеров, а также расходники надежных брендов с доставкой по Москве и в другие города России. Чтобы получить консультацию или оформить заказ, свяжитесь с нашим менеджером по телефону или через форму обратной связи на сайте.

Другие новости

Будьте в курсе

Подпишитесь на последние обновления и узнавайте о новинках и специальных предложениях первыми

Нажимая на кнопку «Подписаться», Вы соглашаетесь с  условиями подписки